Recent experimental results on Longitudinal multiplicity and flow fluctuations in heavy-ion collisions

Soumya Mohapatra (Columbia University)

RHIC & AGS User's Meeting-2016

Origin of longitudinal fluctuations

- Can see it in simple MC Galuber model picture
- Forward & backward going participant distributions are not symmetric

Consequence of longitudinal fluctuations

- Forward & backward going participant distributions are not symmetric
- Three effects of asymmetry:

$$\circ$$
 $\epsilon^{F}_{n} != \epsilon^{B}_{n}$

$$\circ$$
 $\Psi^F_n := \Psi^B_n$

Observing longitudinal fluctuations

EbE Forward-backward (FB) Multiplicity fluctuations

Event-by-Event single-particle multiplicity distributions (normalized):

$$R_{S}(\eta) \equiv \frac{N(\eta)}{\langle N(\eta) \rangle}$$

ATLAS-CONF-2015-020

- Observe clear multiplicity fluctuations along η.
- However single-particle observable cannot be easily used to study correlated fluctuations.

Multiplicity correlation functions

Measure FB fluctuations using two-particle correlations

$$C(\eta_1, \eta_2) = \frac{\langle N(\eta_1)N(\eta_2)\rangle}{\langle N(\eta_1)\rangle \langle N(\eta_2)\rangle} \equiv \langle R_{\rm S}(\eta_1)R_{\rm S}(\eta_2)\rangle \ , \quad R_{\rm S}(\eta) \equiv \frac{N(\eta)}{\langle N(\eta)\rangle}$$

ATLAS-CONF-2015-020 ATLAS-CONF-2015-051

Multiplicity correlation functions

Measure FB fluctuations using two-particle correlations

$$C(\eta_1,\eta_2) = \frac{\langle N(\eta_1)N(\eta_2)\rangle}{\langle N(\eta_1)\rangle\langle N(\eta_2)\rangle} \equiv \langle R_{\rm S}(\eta_1)R_{\rm S}(\eta_2)\rangle \ , \quad R_{\rm S}(\eta) \equiv \frac{N(\eta)}{\langle N(\eta)\rangle}$$

ATLAS-CONF-2015-020 ATLAS-CONF-2015-051

Renormalize to remove overall multiplicity fluctuations (single particle modes)

$$C_{N}(\eta_{1}, \eta_{2}) = \frac{C(\eta_{1}, \eta_{2})}{C_{p}(\eta_{1})C_{p}(\eta_{2})},$$

$$C_{p}(\eta_{1}) = \frac{\int_{-Y}^{Y} C(\eta_{1}, \eta_{2}) d\eta_{2}}{2Y}, \quad C_{p}(\eta_{2}) = \frac{\int_{-Y}^{Y} C(\eta_{1}, \eta_{2}) d\eta_{1}}{2Y}$$

Short-range correlations

Short-range correlations (Jets, decays) produce ridge-like structure along $\eta_1 = \eta_2$.

This must be removed first, before extracting features of the genuine long-range correlation that sits underneath

Short-range correlations

Opp-Charge pairs

Same-Charge pairs

- Short-range correlations depend strongly on relative sign of particle pairs.
- Much larger for opposite-sign (left) than like sign pairs (right).
- Long range correlation quite identical!

Short-range correlations: Removal

- SRC is estimated by fitting 1D projection along η_1 - η_2 with quadratic function over the range $|\eta_1-\eta_2|>1.5$
- Excess over fit is assumed to be SRC and is removed
- Remaining correlation is the genuine long-range correlation: C^{sub}(η₄ η₂)

Extension to pp and p+Pb

 $C_N(\eta_1,\eta_2)$

Extension to pp and p+Pb

Extension to pp and p+Pb

Quantifying the LRC

The LRC is quantified by expanding the correlation function in a 2D Legendre-function basis (arXiv:1210.1965: A. Bzdak, D.Teaney):

$$C_{\rm N}(\eta_1,\eta_2) = 1 + \sum_{n,m=1}^{\infty} a_{n,m} \frac{T_n(\eta_1) T_m(\eta_2) + T_n(\eta_2) T_m(\eta_1)}{2}, \quad T_n(\eta) \equiv \sqrt{\frac{2n+1}{3}} Y \, P_n\left(\frac{\eta}{Y}\right)$$

Example basis functions T_1T_1 and T_2T_2

Coefficients of the expansion a_{m.n} quantify the correlation strength

Correlation coefficients a_{m,n}

- Before SRC removal, several non-zero a_{m n} are observed.
- Significant difference between same-charge and opposite charge pairs

- After SRC removal, only $a_{1,1}$ is significant. FB fluctuation dominated by linear single-particle component
- Consistency between same-charge and opposite charge pairs

a_{m,n}: Dependence on colliding system

Same observation for pp and p+Pb

Multiplicity dependence of a₁:

- Decreases with increasing N_{ch}.
- Identical for different charge combinations across all multiplicities.
- Quite similar between pp, p+Pb and Pb+Pb (Note: different x-axis range)

SRC vs LRC

- SRC is quite different for the three systems
 - Largest for pp smallest for A+A (at same multiplicity)
- Quite comparable LRC for pp, pA and AA!

Similarity of LRC for pp, p+Pb and Pb+Pb

pp, pA and AA are similar on multiple fronts!

Longitudinal flow fluctuations

Quantifying the Event-plane rotation

$$v_{n\Delta}(\eta^a, \eta^b) = \left\langle v_n(\eta^a) v_n(\eta^b) \right\rangle \longrightarrow v_{n\Delta}(\eta^a, \eta^b) = \left\langle v_n(\eta^a) v_n(\eta^b) \cos\left(n\Psi_n(\eta^a) - n\Psi_n(\eta^a)\right) \right\rangle$$

$$r_{n}(\eta^{a},\eta^{b}) = \frac{\left\langle \mathbf{v}_{n}(-\eta^{a})\mathbf{v}_{n}(\eta^{b})\cos[n(\Psi_{n}(-\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle}{\left\langle \mathbf{v}_{n}(\eta^{a})\mathbf{v}_{n}(\eta^{b})\cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle} \sim \left\langle \cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(-\eta^{a}))]\right\rangle$$

Event-plane rotation: Ψ_2

$$r_n \approx \left\langle \cos\left(n\Psi_n(\eta^a) - n\Psi_n(-\eta^a)\right) \right\rangle \approx e^{-2F_n^{\eta}\eta^a}$$

- Clear de-correlation (rotation) observed
- Observable has some dependence on choice of reference bin
 - \circ Dependence is smaller in mid-central events and for $\eta^a < 1$
- Effect decreases from central->mid-central then increases again

Event-plane rotation:Ψ₃

$$r_n \approx \langle \cos(n\Psi_n(\eta^a) - n\Psi_n(-\eta^a)) \rangle \approx e^{-2F_n^{\eta}\eta^a}$$

- Significantly larger rotation for n=3
- Nearly independent of choice of reference bin
- Not much centrality dependence

Event-plane rotation:Ψ

$$r_n \approx \left\langle \cos\left(n\Psi_n(\eta^a) - n\Psi_n(-\eta^a)\right) \right\rangle \approx e^{-2F_n^{\eta}\eta^a}$$

- Significantly larger rotation for n=4 (compared to n=2)
- Nearly independent of choice of reference bin
- Not much centrality dependence

Factorization breakdown in p+Pb:Ψ₂

- Significantly larger rotation for p+Pb
- Nearly independent of choice of reference bin

Event-plane de-correlations: summary

- For n=2 first decreases then increases with centrality and harmonic order 'n'
 - \circ Interesting as p_T dependent factorization breakdown is larger for v₂ than for v₃
- No clear centrality dependence for n=4
- Much larger in p+Pb compared to Pb+Pb at same multiplicity

Drawback of the EP decorrelation measurement

$$r_{n}(\eta^{a},\eta^{b}) = \frac{\left\langle \mathbf{v}_{n}(-\eta^{a})\mathbf{v}_{n}(\eta^{b})\cos[n(\Psi_{n}(-\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle}{\left\langle \mathbf{v}_{n}(\eta^{a})\mathbf{v}_{n}(\eta^{b})\cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle} \sim \left\langle \cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(-\eta^{a}))]\right\rangle$$

- Cannot differentiate between magnitude fluctuation and EP rotation
- Interprets magnitude fluctuation effects as rotation effects

Summary

 Recently there has been much progress in studying longitudinal multiplicity and flow fluctuations (Both theory and experiment)

- Measurements include
 - FB Multiplicity correlations from ATLAS
 - EP rotation measurements from CMS
- FB Multiplicity correlations:
 - Linear multiplicity variation is dominant source.
 - Very similar correlations for pp, pA and AA collisions
 - Systems not too dissimilar after all?
- EP rotations
 - Significant rotation is observed increasing with harmonic order 'n'.
 - Larger for pA than for AA
 - o Must develop observable to disentangle magnitude fluctuations from EP rotation
- Will be interesting to make these measurements in Cu+Au, d/He+Au systems at RHIC

Short-range correlations: Estimation

Opp-Charge pairs

Same-Charge pairs

Ratio

- Short-range correlations depend strongly on relative sign of particle pairs
- Much larger for opposite-sign (left) than like sign pairs (right)
- Ratio has some interesting properties

Other mechanisms of longitudinal fluctuations

Sources of fluctuating length along η. arXiv:1512.01945 (W. Broniowski, P. Bozek)